Much more important than people realize, your tyres are riding on this wire…

From my presentation to the Wire Association International in 2004. Still the most wonderful, talented group of engineers I know.

Lubrication in steel wire drawing operations generally brings soap powders to mind. For larger wires this is uniformly the case. The soap powder melts in the wire/die interface and provides a viscous film that supports the drawing force. The fillers and additives in the drawing soap impart polishing, extreme pressure, and many other properties to the lubricants. As wire sizes get smaller, the soap powders become unsuitable for high performance drawing. The viscosity of the molten film is too high, and the film occludes the hole, reducing the wire diameter and eventually breaking the wire. Additives may corrode the wires causing breaks. The polishing aids and other particulate materials may be drawn into the wire, weakening it and resulting in failures. Wet drawing lubricants are required to overcome this problem.

Wet drawing lubricants are based on water and/or oil and have considerably lower viscosities than the molten soaps they replace. This reduces the film thickness and the chances that the film will occlude or block the die orifice. Wet lubricants do not contain particulate materials, so foreign inclusions are not drawn into the surface from the lubricant. The additive level is much lower in a wet lubricant and can be controlled by dilution. The wet lubricants also provide cooling to the operation, a feature absent from dry drawing operations. The wet lubricant requires different maintenance techniques than those required for dry soaps. A comparison of the two types of wet lubricants and their individual requirements for usage will be presented.

Abstract from my 2004 presentation to the Society of Tribologists and Lubrication Engineers….. Probably one of the best papers I have ever given, and winner of the Deutsch award for practical tribology research. That was a big day for me!

Predictive testing of Steel Rolling oils using the Elastohydrodynamic Lubrication Rig

The rolling of steel sheet from continuously cast slabs and coils or ingots to sheet and tin products is a fundamental step in the manufacture of goods worldwide. Slab and sheet reduction is accomplished by plastic deformation of the slab using large metal rolls to apply a force normal to the slab. The contact area between the roll and the slab/sheet must be lubricated to provide proper sheet finish and good tool life. Rolling operations are very large, and it is difficult to test the performance of rolling oils on the mill due to the volume of lubricant and the set-up times required. Development of reliable predictive testing methods is critical for the design of good rolling lubricants.

Rolling oils are typically formulated from fat and mineral oil basestocks with appropriate additive packages and provide hydrodynamic and boundary lubrication to the roll contact. The rolling contact is formed by the plastically deformed sheet and the roll and has three specific zones – the backward slip zone, the neutral point, and the forward slip zone. In both of the slip zones, fresh metal surface is exposed and the process operates in a slip condition. At the neutral point, the contact operates in a true rolling condition. This suggests that a test method with variable slip is for testing and evaluation of rolling lubricant performance.

There will be new content interspersed with old content for a while…

It’s weird to do car diagnostics from no where near the car. Email diagnostics were taken to a new level with one of the old Golfs – a Brasilian Golf IV TDI that had massive electronic issues. After throwing parts at it for two months under warranty, I called in the help of a trusted friend and VW tech, emailing the longest list of codes I had ever seen: 174 in total. The solution, according to the friend, was to search every ground lug in the car out, and check it. This is a seven hour job, and the dealer was not interested until I threatened to lemon the poor car. I did not want to do that, but hey, it worked. The culprit ended up being a $1.50 acorn nut that was loose on the ground point under the battery. For nine more years under our ownership, the car went without a single problem that could be traced to bad electronics. Actually, it went without any problem that could not be solved in an hour in the driveway, or a call to the warranty office. It was a good car, afterall.

I purchased my Passat in March of 2000 from Devon Hill VW in Devon, PA- they are good guys! I took delivery on the 24th, and I have been enjoying the ride ever since.

It is Indigo Blue with a grey velour interior. It has a five speed manual transmission with the 1.8 litre turbo engine. It came with the luxury package of a sunroof, rear tonneau, and Adelaide wheels (I like them!!). I also purchased the CD-6 changer to go with the Monsoon head unit. I got the CD-6 as a peace offering to my spouse since he wanted the Tip! I also have the VW roof rack crossbars.

My first mod was a customisation. I replaced the shift knob and boot with a gobKnob bubble ball and a custom boot which I made myself. I have a pattern and instructions for those who wish to make their own boots, too. The shifter shaft is an unusual thread- 12mm, 1.5 thread pitch, so you have to get a special tap! Dad machined out the stainless steel fitting which screws onto the shaft. I am planning a surprise *upgrade* for this spring to this knob system. Keep checking the forums at clubB5 for more on this!

2/01 – I recently swapped out the rear interior light for the switched version. This is the same reading light that is found over the rear doors in the cabin. The part cost $22, and the install took about 2 minutes. This is very nice for late night grocery runs with the kids- you can turn off the light and let them sleep!

4/01 – The AlienWindow remote window controller is an excellent modification to make to your car. It allows you to control the windows from your VW switchblade remote. I just did it, and it’s great! It took me about one and a half hours to get done and was a good afternoon project. I took some pictures of the install while I had the car apart.

5/01 – My Euroswitch has arrived from the Pottermen! What nice people out there in CA, they sent me M&M’s with the part. Order from www.parts4vws.com. I have installed it, now I must run the wires for my rear fogs. I also explored the underside of the dashboard – kind of a pain to get into, but there are many goodies underneath there! Including relay 173. I expect to be removing that soon, when I finally convert to clear corners and those fabulous PolarG blue bulbs!

Rear fogs are in! I had some trouble with the wiring, You must go up and over the hatch in the variant, something I did not anticipate when I soldered up my wiring harness. You need 20′ of wire, 13 feet from front to back, and 7 feet from side to side. I have caught some flack for wiring up both sides, but I think that it looks better. I am also thinking about slaving the brake lights into the fogs with the dual diode arrangement, so I need the wire over there anyway. I also hooked up the dash indicator. This was a bit difficult as I had trouble with the plug in the back of the tachometer. It was difficult to get out. But, done and over with, so I am happy.

I added the sunglass holder also this month. Unfortunately, the dealer was only able to get the Passat (3B0) part, so I am stuck with the chrome strip. It doesn’t look as bad as I thought it would in my otherwise chrome-free car.

I am a Organometallic chemist, and my chief interest is is the interaction of hetero-atomic molecules with transition metals, specifically copper, zinc, and iron. Hetero-atomic molecules are those that include atoms such as sulphur and nitrogen in addition to carbon, hydrogen, and oxygen. I like to examine the electrochemistry of the metal surface and how it changes when certain hetero-atomic molecules are brought into contact with it under a variety of conditions such as pressure, sliding and wear. I am particularly interested in the Extreme Pressure (EP) elements- Sulphur, Phosphorus, and Chlorine.

The boundary regime of lubrication is also of interest to me, specifically the area of the transition from Elastohydrodynamic lubrication (EHDL) through the Thin Film (TFL) regime, and into the Boundary regime. I hope to do a lot of work in this area one day. The research group in Mechnical Engineering at the Imperial College of London, headed up by Dr. Hugh Spikes, is a good place to start if you would like to learn more about this area of study.

I also like to investigate the oxidation of aluminum when I am not otherwise occupied

If you would like a copy of any of these, please email your request.

“A tank gone bad: an Investigation of the failure modes of copper wire Drawing Lubricants;” Helmetag, K; Wire Journal International, June 1998

“Aluminum wire Drawing Filtration;” Scalise, J, Helmetag, K; Wire Journal International; September, 2000

“There’s Gold in those Tanks! Getting the Most from Your Aluminum Wire Drawing Oil;” Conference Proceedings of the IWCMW; 2000

“A New Look at an Old Idea: the Torque Curve Revisited;” Helmetag, K; Bench Testing of Industrial Fluid Lubricants for use in Machinery Applications; STP 1404; American Society of Testing and Materials; 2001

“Effective Molecular Weight Considerations in Thin Film Lubrication of Grafted Polymers;” Helmetag, K; Proposal for Oral Candidacy Examination; Drexel University; 1999

“Supplemental Research on Effective Molecular Weight Considerations in Thin Film Lubrication of Grafted Polymers;” Supplement to Proposal for Oral Candidacy Examination; Drexel University; 1999

I’m Katherine, and I’m a chemical tribologist in the metalworking industry. What’s that? A chemical tribologist is a chemist who studies friction and wear. I became interested in this field when I was a co-op student at Drexel University. I co-oped for Apex Alkali Products (now RichardsApex Company), where I learned the fundamentals of lubrication as it applies to wire drawing processes. The work was so interesting that I stayed with Apex for long after my co-op cycle was over! I began to work on lubricant development projects and use bench testing machinery. It was very exciting to see the chemistry I had learned in school in action.

The funny thing is, this all started long before college, or even high school. As a little girl, I had the opportunity to visit the new foundry of the New York Air Brake company (now Knorr Brake). My father is a mechanical engineer (everything in life is a force balance!), and was part of the product design team at the Air Brake. The children on the tour got to do some of the things that the foundry workers did every day. I got to make a sand cast of a complex pnuematic valve assembly. This involved pouring the sand and pressurising the mould. I then inserted little styrofoam blocks into the sand cast to support it under the weight of the molten metal. I put the sand cast onto a conveyor, and followed it to a platform where I was directed to pull a large handle- it was as long as I was tall! The parts came out of the other end of a large machine, and we follwed them around the factory as they were machined and fitted out. Many years later, I realised that I had pulled the ladle and made an iron casting. It was a long time before I figured out what each step of the process was for and what I had actually done, but from the day of the visit on, I was completely fascinated by manufacturing and big metal. The foundry experience shaped my life in ways I wouldn’t appreciate for over 15 years.

After 2 and a half years at Apex, I decided to finish my coursework full time. I left Apex for a year of intense study and graduated from Drexel University in 1994 with my BS in Chemistry.

After graduation, I joined Houghton International, a leading independent manufacturer of metalworking fluids. This is where the fun really got going! I started in the Fluid Power group, learning about hydraulic systems and their lubrication requirements. That didn’t last long, as an opening turned up in the Metal Forming group. Metal forming is the chipless deformation of metals- and wire drawing is one of the many processes that fall under its umbrella. I was right at home!

While working at Houghon, I had many opportunities- I completed my MS in Organometallic Chemistry at Drexel in 1998, and passed my candidacy exams for PhD in January of 2000. I hope to complete my PhD one day. I have also published several research and technology papers (see list below). I have become very involved in the development of new lubricant testing methods which provide more representative pictures of the lubrication system at work in a given process.

I worked with several processes at Houghton- non-ferrous (aluminum and copper) wire drawing, steel wire drawing, hot and cold forging, cold heading, deep drawing, stamping, fine blanking, rolling, extrusion and many other low metal loss processes. I occasionally worked with sintered metals and die casting. I was asked to design lubricants for each of these processes. This required a complete understanding of the process and its lubrication requirements. My mechanics background came in very handy with this part of the job! I then mapped the process by determining the simplest configuration of testing pieces which will give an accurate representation of the conditions of the metal/die contact I was studying. I also developed test methods for the bench tester I planned to use. Some of the testers I used are the Falex pin and vee block rig, the 4-ball EP and 4-ball wear, the ball on three disc, and the Reichert device.

My favourite project is the development of specialised lubricants for the wet drawing of steel filaments. I hope to obtain a patent on this work.

After 7 great years at Houghton, I was approached by Arizona Chemical Company, the chemicals division of International Paper to take over their metalworking program. Arizona takes waste streams from the kraft paper pulping process called black liquor and refines these wastes into pure fatty acids and fatty acid blends. Nearly 30% of the material is made of rosins and rosin acids These important materials play a big role in metalworking by forming strong films which support heavy loads.

I was doing research to study how Arizona’s products can be used in metalworking. It was a lot of fun, and was the opportunity I was looking for to do molecular level development work. Arizona is in Savannah, GA, a beautiful southern city with a lot to offer!

Now I’m at Henkel Corporation outside of Detroit. Back at home, if you ask me!

To learn more about tribology, check out the Society of Tribologists and Lubrication Engineers and the American Society of Mechnical Engineers.